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ON A CLASSIFICATION PROBLEM: RANKING AND SELECTION APPROACH *

by
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Purdue University National Central University
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ABSTRACT

This paper deals with a classification problem based on ranking and selection ap-
proach. We assume that the populations follow multivariate normal distribution. The
corresponding selection problem is to choose the population with the smallest Mahalanobis
distance. The subset selection approach is considered throughout this paper. Sometimes
the indifference zone approach is also proposed. It should be pointed out that, for the
subset selection approach, we need not assume that the individual to be classified belongs

to one of the several given categories. The classification procedures depend on whether
the parameters p. and I; are known or unknown.

Key Words and Phrases: classification rules; multivariate normal populations; Maha-
lanobis distance; ranking and selection; probability of correct classification.
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1. Introduction

The problem of classification arises when an investigator makes a number of measure-
ments on an individual and wishes to classify the individual into one of several categories
on the basis of these measurements. Since Fisher (1936) introduced the linear discriminant
function for distinguishing between two multivariate normal distributions with a common
covariance matrix, a great deal of work has been done by many authors on this prob-
lem. Fer an extensive bibliography, the reader is referred to Anderson, Das Gupta and
Styan (1972), Das Gupta (1973) and Lachenbruch (1975). For a general approach to this

problem, Anderson (1984) is a good reference.

In general, for the classification problem, we assume that the individual to be classified
belongs to one of the several categories. In a real situation, this assumption may not be
appropriate. Thus the problem of selecting the nearest category to the individual based on
distance function was considered to cover the above drawback. For the decision theoretic
approach see Cacoullos (1965a, 1965b) and Srivastava (1967). Although some intuitive
classification procedures have optimality properties based on decision viewpoint, in practice
we want to control the probability of misclassification. Using the classical approach, it is
difficult to control this probability. Hence an approach based on the concept of ranking and
selection was considered by Cacoullos (1973) and A.K. Gupta and Govindarajulu (1973,

1985). Unfortunately, their results are too conservative and very li-.ited.

Let CC stand for a correct classification and R denote a classification procedure, for

a given constant P*, 1/k < P* < 1, we want to choose a classification procedure R to

satisfy the probability requirement (1.1)
P(CCIR) 2 P* (w1)

where P(CC|R) is the probability of a correct classification when the procedure R is used.
To make the classification problem more precise, we may ask the problem: can one find a
classification procedure satisfying the probability requirement (1.1) and what is the sample

size needed?
Let 7y, + =0,1,...,k, be k+1 populations, we want to classify 7o as one of the 7;, 1 =
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1,...,k. We assume that m; ~ Np (E;" Z;) (the p—variate multivariate normal distribution
with mean vector B, and covariance matrix X;), ¢+ = 0,1,..., k. Based on the Mahalanobis
distance between two populations, our problem is related to the problem of selecting the
smallest Mahalanobis distance. The subset selection approach is considered throughout
this paper. Sometimes the indifference zone approach is also used. The classification

procedures depend on whether the parameters Iy and I; are known or unknown.

2. Classification procedures when By known, K t=1,...,k, unknown

In this section we assume that is known and Byt =1,...,k, are unknown. The

B,
Mahalanobis distance of 7; and 7o is defined to be 8; = (&‘, — ﬁo)' E,.‘l (E,’ - .’io) , 1=
1,...,k. Let 6} < ... < B} denote the ordered values of the 8;’s, ¢t = 1,...,k. Our
classification problem may reduce to a selection problem which selects the population
corresponding to the parameter ;). We will classify mo as the selected population when
the indifference zone approach is used, and classify 7o as any one population in the selected

subset when the subset selection approach is used.

—_— n
Let X;:, j = 1,...,n, be a random sample from population 7;, X; = % > X,; be
i=1

n—1 . —

n — —-—
the sample mean vector, S; = 715 Y (X;; - X,) (X, - _X__i)' be the sample covariance
7=1

matrix for the population 7y, + = 1,...,k, respectively and S = -,1; zk: S; be the pooled
sample covariance matrix of populations m,...,mx. Throughout th'i;;lpa.per, we denote
X:;s as the noncentral chi-square distribution with degrees of freedom p and noncentrality
parameter § and Fy ;5 as the noncentral F-distribution with degrees of freedom p and ¢
and noncentrality parameter §. Also, let Gp(z; ) denote the cdf of x2.; and Fy ¢(z;6) the

cdf of Fp q;5. When 6 = 0 we simplify these by x3, Fp,q, Gp(z) and Fy o(z) respectively.

We will discuss the classification procedures in various situations.

2.1. 5, v=1,...,k, known

2.1.1. Indifference Zone Approach

For the indifference zone approach, we will make the assumptions ;) = 0, i.e. mo




belongs to one of the m;, 1 = 1,...,k, and §|3) > A, where A is a given positive constant.

— ' —
Let Y;=n (Xi - .’.‘.o) vt (X,- - ﬁo) ,t1=1,...,k, then Y; ~ xz;no‘. Intuitively, we will

%

consider the classification procedure R; as follows:

R;: Classify ng as =, if and only if Y; = mxgk Y;.

For a given P*, we want to find an appropriate sample size n so that the probability

requirement (1.1) is satisfied. The following theorem is useful for this problem.
Theorem 2.1. inf P(CC|Ry) = [ [1 — Gp(z;nA)[F~1dGp(z). (2.1)
Proof. Let Y{;) denote the statistic corresponding to the parameter (;;. Then

P(CC|Ry) = P{Y4y) <Yy, 1 =2,...,k}
oo k
= / H [1-Gp (x;nﬂm)] dGp(z)
0 j=2

o0
> [T11- Gy(aina)F G @) (22
0
The inequality (2.2) holds, since Gp(z;6) has the stochastic increasing property and the
equality is attained when f[3) = ... = 0 = A. O
Remark 2.1. Let d be the solution of the equation
o
/ (1 = G, (z:d)|F~1dG,(z) = P* (2.3)
0

and n* be the smallest positive integer such that nA > d. Then n* is the sample size
needed to guarantee the probability requirement (1.1).
2.1.2. Subset Selection Approach

For the subset selection approach, Gupta (1966) and Gupta and Studden (1970) have
considered the problem for selecting the smallest parameter of 52‘-— 1&_’ t =1,...,k.

Following their idea, we consider the classification procedure R, as follows:

R2: Classify mp as any one of the m;’s for which Y; < ¢, r<nm Y;, where ¢c; > 1 is the
<5<

smallest value such that the probability requirement (1.1) is satisfied.

By applying Theorem 3.1 of Gupta and Studden (1970), we have the following theo-

rem:




Theorem 2.2. inf P(CC|R;) = [;°[1 — Gp(z/c2)]F~1dGp(z). (2.4)

Proof. P(CCIRQ) =P {Y(l) < C2Y(]'), 1=2,. ..,k}

o k
/ H I/CZ"‘GIJ])] dGp (z3nb)1))

oo
k—
> /0 [1 -Gy (z/c2inbyy)] lde (z;nby)) (2.5)
2/ [1 - Gp(z/c2)1*~1dG,(z). (2.6)
0
The equality in (2.5) holds when 8);; = 03y = ... = )4 and the equality in (2.6) holds
when ;) = 0. d

Remark 2.2. The values c; satisfying the equation [;°[1 — Gp(z/c2)]¥~1dG,(z) = P* can
be found from Gupta and Sobel (1962} and Armitage and Krishnaiah (1964).

On the other hand, we may consider another classification procedure R3 as follows:

R3: Classify 7o as any one of the 7;’s for which Y; < ¢3, where c¢3 is the smallest positive

constant such that the probability requirement (1.1) is satisfied.
For the determination of the value c3, we can use the following theorem:
Theorem 2.3. inf P(CC|R3) = Gp(es), if 8}y = 0.

Proof. P(CC|R3) = P {Y{1) < c3}

= GP(C3) if 0[1] =0. 0

The values of c3 can be found from x3-tables.

Remark 2.3. Note that if we use the procedure Rz, the selected subset may be an empty

set. This drawback suggests that 7o may not belong to one of the n;, 1 =1,...,k.

Remark 2.4. We may consider a testing problem: HO:EO =p, for somet, 1t = 1,...,k,
vs. Hytpo # s 8= 1,0 ,k. For a level o test, the suggested rejection region could be

r<n12’c Y; > d, where d is the c3 value determined by the procedure R3 and the associated
1<;<




probability P* is 1 — a. We note that

> =1~ 1 :
Py, <lr<n;2kY d) 1~ Py, (lrsnjlgkYJ < d)

<1-Py, (Yy)<d)=1-P* =0.

2.2. X;, 1t=1,...,k, unknown, not all equal

2.2.1. Indifference Zone Approach
_ ’
If¥;, + =1,...,k,are unknown but not all equal, we may estimate 8; by (X_‘. - ﬁo) S‘.‘l

— — ! _—
(Xi-np)s =1k Let V7 =n (X~ py) 57 (Zi- ) i=1,...,k, and define
a classification procedure R, as follows:
Ry4: Classify g as 7; if and only if Y* = 1I<_r}12k Y‘7 .
We note that ¥;* ~ %Fp,n_p;ng‘ and F, n_p(z;nd;) has the stochastic increasing

property. If we assume that 6;) = 0 and 8j3) > A, then we have the following theorem:
Theorem 2.4. inf P(CC|Ry) = [;°[1 — Fpn—p(z;nA)}F~1dF, n_p(). (2.7)

Proof. P(CCIRd) = P { Y0y < @Yy, 5 =2k}
oo k
= / [1 (1 = Fonep (2:7815)] dFpnp (2)
0 iz

> [T 1= Fpnoal@inA)F By (2). =
0
Remark 2.5. In order to satisfy the probability requirement (1.1), we should choose the
smallest n such that nA > d and [[°{1 ~ Fpn_p(z;d)|*~1dFp n_p(z) =

2.2.2. Subset Selection Approach

Analogous to Gupta and Studden (1970), we consider the classification procedure Rs

as follows:

Rs: Classify 7o as any one of the m;’s for which Y.* < ¢5 min Y., where ¢5 > 1 is the
' 1<;<k 7

smallest constant such that the probability requirement (1.1) is satisfied.

By applying Theorem 3.1 of Gupta and Studden (1970), we have the following theo-

rem:




Theorem 2.5. inf P(CC|Rs) = [;°[1 = Fpn—p(z/c5)|* " dFpn_p(z). (2.8)

Proof. P(CC|Rs) = {Z:__%Sy(l) < 65‘(7_5?},(1)’ Jj=2,. k}

o k
/0 H [1 — Fon—p (x/c5;n0[j])] dFpn_p (x;nﬂm)

=2

v

/‘; (1= Fpnp ("’/°53n0[1])]k—1 dFpn—p (zinbpy))

> [Tl = Fpnepla/es)] T dFpnos2). =
0
Remark 2.6. The value of ¢5 is the solution of the equation

[Tt = Baneplfes) - dFy o (2) = P

On the other hand, we may consider a classification procedure R¢ as follows:

Rg: Classify 7o as any one of the x;’s for which Y;* < cg, where cg is the smallest positive

constant such that the probability requirement (1.1) is satisfied.
For the determination of the cg values, it is easy to show that
Theorem 2.6. inf P(CC|Rg) = Fpn—p (Tn—f’ﬁce) if 6);) = 0.
The values of ¢¢ can be found from the Fj, ,_p—tables.

Remark 2.7. Note that if we use the procedure Rg, the selected subset may be an empty

set.
Remark 2.8. We may consider a testing problem: Ho:p =4, for some 1, t+ = 1,...,k,
vs. Hyipy # By 1 =1,...,k. For a level a test, the suggested rejection region could be

11<mgk Y* > d, where d is the cg value determined by the procedure Rg and the associated
<5<

probability P* is 1 — a.

23. L, =%, 1=1,...,k, unknown

.,k, are unknown, we estimate ¥ by S and let Y** =

1
— ' — .
n(&i—ﬁo> s-1 (—X-i_ﬁo)’ { = 1,...,k. We note that Y* ~ v—;g:fl-Fp,u—pH;no.»,




where v = k(n — 1) and a’E71a/Chy(SE~1) > 'S~ g > a’E71a/Ch,(SZ7!) for any
p x 1 vector g, where Ch;(SEX~!) is the :-th smallest eigenvalue of the matrix ST~'. Let
Z = Chy(SZ7')/Chy(SE™") and H(z) be the cdf of Z (H is independent of p, ¢ =
1,...,k, and X). This problem was considered by Chattopadhyay (1981) for subset selec-

tion approach.

2.3.1. Indifference Zone Approach

For the indifference zone approach, we consider the classification procedure K7 as

follows:
R7: Classif ; ifandonly if Y,"* = min Y ".
7: Classify mo as «; if and only if Y 12151: g
For this procedure, the following result can be used to determine the required sample

size to satisfy the probability requirement (1.1).
Theorem 2.7. inf P(CC|R7) > [ [°[1 — Gp(z/2;nA)|F~1dGp(z)dH (2). (2.9)

Proof. P(CC|Rs) = P {Y(*;) <Y G=200k)

> P{n (X(l) _Eo),z:_l (Z(l) - Eo) s g’%};%;—n (X(J') - Eo>lz_1 <X(J‘) - EO) ’

j=2,...,k}

1 o k
= / / H [1 - G, (z/2in8y;))] dGy(z)dH (2)
o Jo i,
o n k-1 T z
> [ [ 1= Gyafmna) G, e, =

Remark 2.9. Since Chl(SE_l)/Chp(SZ_l)fbl as n — oo, we have P(CC|R7) — 1 as

n — 00,

Remark 2.10. The distribution of Ch;(SE~!)/Chy(SZ 1) can be found in Pillai, Al-Ani
and Jouris (1969).

Remark 2.11. It is easy to show that inf P(CC|R7) > P(Z > 8.) [°[1-Gp(z/0c;nA)]*~1dG (1),
wheree > 0and P(Z < 0,) = €. Theequation P(Z > 8.) [, [1-Gp(z/8e;nA) |k~ 1dG,(z) =

8




P* can be used to determine the required sample size.

2.3.2. Subset Selection Approach

For the subset selection approach we refer to Chattopadhyay (1981). We consider the

classification procedure Ry as follows:

Rg: Classify mo as any one of the n;’s for which Y;"" < ¢g r<mg Y , where cg > 1 is the
15;<
smallest constant such that the probability requirement (1.1) is satisfied.

Analogous to the proof of Theorem 2.7, we have the following result:
Theorem 2.8. inf P(CC|Rs) > fy [°[1 — Gy(z/csz)]*~1dG,(z)dH (2). (2.10)
Remark 2.12. [, IS 11— Gp(z/csz)|*~1dGp(z)dH(z) — 1 as n — oo.

Remark 2.13. It is easy to show that
(e 0)
inf P(CC|Rg) > P(Z > 0,)/ [1- Gp(z:/cs0¢)]k_1de(z).
0
On the other hand, we may consider an easier classification procedure Ry defined as
follows:

Rg: Classify 7o as any one of the m;’s for which Y;"* < ¢g, where cg is the smallest positive

constant such that the probability requirement (1.1) is satisfied.
It is easy to show that
Theorem 2.9. inf P(CC|Rg) = Fp,y_p+1 ("-‘tf’:'—lcQ) if 8;;) = 0.

Remark 2.14. We can consider the testing problem: Hoip, = p,, for some1, 1 =1,...,k,

Vs. H“ﬁo Fh, 1= 1,...,k. The reject region is lréxjigk Y >d.

3. Classification procedures when B, unknown, Ko 1=1,...,k, known
In the case that By is unknown and B t=1,...,k,are known. Let X,,,...,X,, bea
random sample from 7o and X, = 1 Z X, So = Z (Xo; — Xo) (Xo; - X,) . The
"= e

]
Mahalanobis distance between populations mo and 7, is defined to be A; = (E.- - Eo) 20_1

(E; - ;_1,_0) . We will discuss the classification procedures in various situations.

9




3.1. o known

3.1.1. Indifference Zone Approach

For the indifference zone approach, we assume that A;z) — A;;) > A. We define Z; =
— I —
(.)io "E.') Eal (Xo —E,') , t = 1,...,k. Intuitively, we may consider the classification
procedure R;q as follows:
. Cl i s i d 1 P = 1 .
Rio assify 7o as = if and only if Z 1rgnjlgk Z;

For the nrocedure R;o, we note that
, —
Zi<Z, =1,k j#1iff2 (&j —&.) 55! (X.o ‘Eo) <A — A
Thus we have the following result:

Theorem 3.1. inf P(CC|Ri0) > 1 - (k - 1)@ (-2 ), (3.1)

!
2 2 £2 —_ =1 -
where @ is the cdt of the standard normal and 6 1r2;a<x 6;7,6f = max (EJ U, ) L (Ej E,') .
J#ES

Proof. P(CC|Ry0) = P {Z(l) < Z(j), ] = 2,...,k}

' (= .
{2 By~ ) Tot (Xo = i) € A1 = Ay g —2,...,k}
5

_Pp (
Zp{z(ﬁ(f)_ﬁ(x)), ot (Xo - 1) < &, 1'22"""‘}

>1- 3 {2y - ) 53 (To-) > )
J=2

k
—y/nA
=1- Z‘D , 172
=2 _ -1 _
2 [(Em k) 55 (k) ﬁ(x))]
—/nA
>1- (k- Y : 3.2
> 1 (k- e (Z45) (5.2
[

The inequality (3.2) holds since 62 > (u( ) g_(l)) ot (y_(j) - ﬁ(l))' O

26
find n such that inf P(CC|Ryo) > P*.

Remark 3.1. Asn — co, ¢ (3@) — 0, hence P(CC|Ro) — 1. For given P*, we can

10




3.1.2. Subset Selection Approach

For the subset selection approach, we consider a classification procedure R;, as follows:

R,,: Classify 7o as any one of the n;’s for which Z; < 11'<n.i21k Z; + c11, where ¢q; is the
<<

smallest positive constant such that the probability requirement (1.1) is satisfied.

Analogous to the proof of Theorem 3.1, we have the following result:
Theorem 3.2. inf P(CC|R11) > 1~ (k- 1)& (=Z2u). (3.3)

Proof. P(CCIRH) =P {Z(l) < Z(J') +e11, J = 2,...,k}

=P {2 (E(,-) —E(l))'ZJI (Xo _Eo) SAs - Apgptenn,i= 2,...,k}

> P {2 (_‘i(,') —ﬁ(l))lﬁgl (lo _Eo) <er, J = 2,...,k}

21—(k—1)<1><"—‘2—';—°£>. 0

On the other hand, we suggest another classification procedure R;, as follows:

Ry,: Classify 19 as any one of the =;’s for which nZ; < ¢;2, where ¢;2 is the smallest

positive constant such that the probability requirement (1.1) is satisfied.
For this procedure, it is easy to show that
Theorem 3.3. inf P(CC|Ry2) = Gp(e12) if A =0.

Remark 3.2. We may consider a testing problem: HQ:EO

vs. Hl:ﬁo # B 1 =1,...,k. The suggested reject region is 1r<_nji2k Z; > d.

= W for some s, t =1,...,k,

3.2. ¥o unknown

_— ' —
When g is als¢ - . 1own, we estimate it by Sp, and let Z! = n (_X_o - -‘fi) SO'1 (2(_0 - E;)’
t =1,...,k. For the in”""™ -ence zone approach, we consider the classification procedure

R;3 as follows:

R3: Classify mo as m; if and only if 2} = l1<n.i21k ZJ-*.
<<

11




Analogous to the proof of Theorem 2.7, and Theorem 3.1, for large sample, we have

the following result:

Theorem 3.4. inf P(CC|R13) > 1— (k- 1)® (:Ju';&), if n is large enough.

Proof. P(CC|Ris) = P {Z{y) < Z(;), j = 2,...,k}

= P{" (% ‘ﬁ(l))’zgl (Zo - 1) < %Zig_gg%” (%- ﬁm)lzal

“P{"(X-O‘-‘f(l)>,251 (e - 1) <7 (Zo- 1) 55" (Zo - 1)) = 2""”‘}

~/nA
26

>1—-(k-1)® ( ) , if n is large enough. a

For the subset selection approach, we consider the classification procedure R4 as

follows:

R, 4: Classify mo as one of the 7;’s for which Z; < 11<1xix_1k VA J?‘ + ¢14, where ¢4 is the smallest
]\

positive constant such that the probability requirer;le;lt (1.1) is satisfied.
For large sample, it is easy to show that
Theorem 3.5. inf P(CC|R1q) > 1 - (k — 1)@ (:\25;&4)
. On the other hand, a simple procedure R;5 can be defined as follows:

Ry5: Classify mo as one of the m;’s for which Z’ < ¢;5, where ¢;5 is the smallest positive
%

constant such that the probability requirement (1.1) is satisfied.
Since Z; ~ {2=LUBR, ..., it is easy to show that

Theorem 36. inf P(CC|Ris) = Fypn—p (2F5e16) if Ay = 0.

4. Classification procedures when B 1=0,1,...,k, unknown
When B 1=0,1,...,k, are unknown, we use 4; defined in Section 2 as a measurement
of distance between populations mo and 7, ¢ = 1,..., k, respectively. Let X, 7 =1,...,n,

12




be a random sample from population n;, 1 = 0,1,..

:sl'-

n
E be the sample

n —
mean vector and S; = Z (_,J X)) (X i — X ,-) be the sample covariance matrix

k
within the population 7; and §* = k—+1 Y~ S; is the pooled sample covariance matrix. We
i=0
will discuss the classification procedures in various situations.

4.1. ¥;, 1+ =1,...,k, known

When £, + = 1,...,k, are known. We define U; = n(zo —X,-)'}:J‘-_l (Xo —X,-),
t = 1,...,k. For this case, we use the subset selection approach and consider a classification

procedure R;¢ as follows:

Ry 6: Classify mo as one of the m;’s for which U; < ¢;6 lr<rli£1k Uj, where c1¢ > 1 is the
<<

smallest constant such that the probability requirement (1.1) is satisfied.
For this procedure, we have the following result:

Theorem 4.1. inf P(CC|Ry6) > [;°[1 — Gp(2z/c16)]*~1dGp(2). (4.1)

. ——— I —
Proof. Let U(J) =n (—X—O ——X(J)) E(J) (X X(J)) , J =1,... ,IC. Givenxo =z, U(].), J =

., k, are independent and U;) ~ x? ' .
pin ( & —) Erz)( £ 5)

P(CClRle) =P {U(l) < c16Y(5)> J= 2,...,k}

- /P{n (X - z) 5] (X -2) < eron (Ziy - 2) 553 By - 2) s = 2.k f dF(2)

k ! l
=/H [I'Gp(y/““"(ﬁu)‘g) =5 ()~ 2 }dGP (y’" By ~2) 50 (B = 2

/H[I" #(v/216)14G, ( (e —2) =5 (0 - )) dF(z
=P {U(l) < cleLJZJ-), 7= 2,...,k}

where F is the cdf of Zo’ UZJ’)’ J =2,...,k, and Uy are independent and UZJ.) ~ x;‘;.
Now U(y) ~ 2x:. Hence

P(CCIRle) > /ooo[l - G’p(2y/c16)]"'ldGP(y). O

13




!
Remark 4.1. If we use the measurement v; = (_;f'. - Eo) (Zo + )t (ﬁ‘. - ﬁo) Then we

have an easier classification procedure R, defined by

Ry7: Classify mo as one of the ;’s for which U] < ¢17, where U] = n (Zo ~Z,~)’(Eo +
Z].‘)‘1 (Xo —Z,-) and c;7 is the smallest positive constant such that the probability re-

quirement (1.1) is satisfied.

It is easy to show that inf P(CC|Ry7) = Gp(e17) if vy = 0.

4.2. ¥;, 1 =1,...,k, unknown, not all equal

When X;, 1t =1,...,k, are unknown and £;, t = 1,...,k, are not all equal. We define
Vi=n(X, - Xi)'S‘-_l (X, - X,), i=1,...,k. A classification procedure Ryg is defined

as follows:

R,3: Classify mp as one of the m;’s for which V; < ¢;3 11<rli1<1k V;, where ¢1g > 1 is the smallest
<<

constant such that the probability requirement (1.1) is satisfied.

Given X, = z, we have V; ~ (n=lpp (

n—p " pn-pin )’2—1 (ﬁ.' _5). Analogous to the proof

of Theorem 4.1, we have the following result:
Theorem 4.2. inf P(CC|Ris) > [y |1 ~ Fpn-p(2y/c18)]* 1dFp,n—p(y). (4.2)

Proof. [ P{V(y) < e1sV(j), 4= 2,...,k| Xy =z} dF(z)

> P {v(l) < eV = 2,...,k}

where V(;.) and V(,) are independent, V(;) ~ 1%_—112

-p
2,...,k. Thus

n—1

Fpn—p and V(;') ~ Thop Fon-p, J =

oo

P(CC|Rys) 2 /o 1- Fp,n-p(2y/°18)]k_lde,n—P(!I)-

Remark 4.2. We can define an easier classification procedure R;g as follows:

R;o: Classify my as one of the x;’s for which V; < ¢;9, where ¢y9 is the smallest positive

constant such that the probability requirement (1.1) is satisfied.
It is easy to show that inf P(CC|Ryg) = Fpn—p (ﬂ%{-ﬁclg), if §;3) = 0.
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43. ¥, =X, 1+=0,1,...,k, unknown

When &; = £, 1+t = 0,1,...,k, and ¥ is unknown, we estimate £ by S* and define
W;=n (_Xo - Xi)’S"‘1 (7_(_0 - X‘) ,t=1,...,k. Then a classification Ryo can be defined
by:

R2o: Classify 7o as any one of the 7;’s for which W; < ¢y9 lgljgk W;, where cz0 > 1 is the
<i<

smallest positive constant such that the probability requirement (1.1) is satisfied.

Given X, =z, W; ~ )’ where v* = (k+1)(n—1).

v'p .
V‘—P+1Fp,v‘—~p+l;n(g‘,-£) £-t (g‘.—a
Analogous to the proof of Theorem 4.1 and Theorem 2.7, we have the following result:

Theorem 4.3. inf P(CC|R30) > fol S = Fp e —ps1(2y/c202) k!

dFp v —p+1(y)dH" (2). (4.3)

where H*(z) is the cdf of Ch{(S*L~1)/Chy(S*T1).

Proof. P {W(l) < C20W(J-), 1=2,... ,klzo = ;}

= P{n (Z(l) —2)’5*_1 (Z(x) —§> < ezon (Z(j) —z)lS*_l (Z(,-) -5) y I = 2,---,/6}

v

[ TL [t B (st (- 2) 27 (= 5)) | e
<<> (10 -2)) (2

> [ 71 B oprs esoa) B (i (= 2) 27 (s - 2) ) (2

=P {wm < c2oW(y, 5= 2,000 k| Xp = _n_:_}

where W) ~ u—‘i_‘p&_le’”‘_P'*'l is independent of X,. Therefore
CC!Rzo P {W(l) < CQOW(J), 7 =2,. k}
/ [0 B prr(20/e02) " dFp e pua(4)H" (2). O
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Remark 4.3. We also have inf P(CC|Ry0) > P(Z2* > 6,)

oo
/o (1~ Fpoe—p+1 (2!//‘32095)]k—l dFp,u-—p+1(v),

where Z* = Chy(S*T~1)/Ch,(S*T1).

Remark 4.4. Since W; ~ ZF{;%FP,,,-_,,H;"&, we can define an easier classification

procedure Ry, as follows:

R3;: Classify mg as one of the ;’s for which W; < ¢3;, where ¢3; is the smallest positive

constant such that the probability requirement (1.1) is satisfied.

It is easy to show that inf P(CC|R21) = Fp v+ —p+1 (2.2—:%1621> if 8};) = 0.
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